Exercise 6

A triangle has vertices $(0,0,0),(1,1,1)$, and $(0,-2,3)$. Find its area.

Solution

Let \mathbf{r}_{1} and \mathbf{r}_{2} be the displacement vectors from $(0,0,0)$ to $(1,1,1)$ and $(0,-2,3)$, respectively.

$$
\begin{aligned}
& \mathbf{r}_{1}=(1,1,1)-(0,0,0)=(1,1,1) \\
& \mathbf{r}_{2}=(0,-2,3)-(0,0,0)=(0,-2,3)
\end{aligned}
$$

Calculate the cross product of \mathbf{r}_{1} and \mathbf{r}_{2}.

$$
\begin{aligned}
\mathbf{r}_{1} \times \mathbf{r}_{2} & =\left|\begin{array}{ccc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\
1 & 1 & 1 \\
0 & -2 & 3
\end{array}\right| \\
& =\left|\begin{array}{cc}
1 & 1 \\
-2 & 3
\end{array}\right| \hat{\mathbf{x}}-\left|\begin{array}{cc}
1 & 1 \\
0 & 3
\end{array}\right| \hat{\mathbf{y}}+\left|\begin{array}{cc}
1 & 1 \\
0 & -2
\end{array}\right| \hat{\mathbf{z}} \\
& =(3+2) \hat{\mathbf{x}}-(3-0) \hat{\mathbf{y}}+(-2-0) \hat{\mathbf{z}} \\
& =5 \hat{\mathbf{x}}-3 \hat{\mathbf{y}}-2 \hat{\mathbf{z}} \\
& =(5,-3,-2)
\end{aligned}
$$

The area of the parallelogram with sides \mathbf{r}_{1} and \mathbf{r}_{2} is given by the magnitude of this cross product.

$$
A=\left\|\mathbf{r}_{1} \times \mathbf{r}_{2}\right\|=\sqrt{5^{2}+(-3)^{2}+(-2)^{2}}=\sqrt{38}
$$

The area of the triangle is half of this.

$$
A_{T}=\frac{\sqrt{38}}{2}
$$

